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Abstract. The Yonsei AErosol Retrieval (YAER) algorithm for the Geostationary Ocean Color Imager 

(GOCI) retrieves aerosol optical properties only over dark surfaces, so it is important to mask pixels 15 

with bright surfaces. The Advanced Himawari Imager (AHI) is equipped with three shortwave-infrared 

and nine infrared channels, which is advantageous for bright-pixel masking. In addition, multiple visible 

and near-infrared channels provide a great advantage in aerosol property retrieval from the AHI and 

GOCI. By applying the YAER algorithm to 10 minutes AHI or 1 hour GOCI data at 6 km × 6 km 

resolution, diurnal variations and aerosol transport can be observed, which has not previously been 20 

possible from low-earth-orbit satellites. This study attempted to estimate the optimal aerosol optical 

depth (AOD) for East Asia by data fusion, taking into account satellite retrieval uncertainty. The data 

fusion involved two steps: (1) analysis of error characteristics of each retrieved result with respect to the 

ground-based Aerosol Robotic Network (AERONET), and bias correction based on normalized 

difference vegetation indexes; and (2) estimation of the fused product using ensemble-mean and 25 

maximum-likelihood estimation methods. Fused results show a better statistics in terms of fraction 

within the expected error, correlation coefficient, root-mean-square error, median bias error than the 

retrieved result for each product.  

1. Introduction 

Aerosols are generated by human activities and natural processes on local to global scales, and have a 30 

lifetime of several to tens of days. Aerosols affect radiative energy by scattering and absorption (e.g. 

Cho et al., 2003). High aerosol loadings are persistent in Northeast Asia, including diverse aerosol types 

from various sources. Interactions among aerosols, clouds, and radiation in the atmosphere cause 

significant uncertainties in climate-model calculations (IPCC, 2013). Datasets produced by satellites 

have been widely used to reduce such uncertainties (Saide et al., 2014; Pang et al., 2018), but the 35 
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systems must be accurately calibrated, verified, and consistent. Satellite data have been used extensively 

to retrieve aerosol optical properties (AOPs) over broad areas, with several algorithms having been 

developed (Knapp et al., 2005; Remer et al., 2005; Kim et al., 2008; Lyapustin et al., 2011a, b; Lee et 

al., 2012; Fukuda et al., 2013; Hsu et al., 2013; Levy et al., 2013; Kim et al., 2014, 2016; Choi et al., 

2016, 2018; Garay et al., 2017, 2020; Kikuchi et al., 2018; Li, et al., 2018). Sun-synchronous orbit 40 

(SSO) satellites pass over the same area each day at approximately the same local time. Satellites in low 

earth orbit (LEO), including SSO, cover the entire Earth over one to several days, depending on 

instrument and orbit characteristics. Most aerosol retrieval algorithms have been developed for LEO 

satellites (Kim et al., 2007; Lyapustin et al., 2011a, b; Lee et al., 2012; Fukuda et al., 2013; Hsu et al., 

2013; Levy et al., 2013; Garay et al., 2017, 2020). Instruments currently onboard satellites include the 45 

Moderate Resolution Imaging Spectrometer (MODIS), Visible Infrared Imaging Radiometer Suite 

(VIIRS), Multi-angle Imaging SpectroRadiometer (MISR), and Cloud and Aerosol Imager (CAI) 

(Remer et al., 2005; Lyapustin et al., 2011a, b, 2018; Fukuda et al., 2013; Hsu et al., 2013; Levy et al., 

2013; Garay et al., 2017, 2020). 

Representative algorithms developed for MODIS data include the Dark-Target (DT; Remer et al., 50 

2005; Levy et al., 2013), Deep Blue (DB; Hsu et al., 2013; Sayer et al., 2014), and Multi-Angle 

Implementation of Atmospheric Correction (MAIAC; Lyapustin et al., 2011a, b) systems, which are 

also applied for the succeeding VIIRS (Sayer et al., 2018). In the DT algorithm, the 2.1 μm channel is 

used to estimate land-surface reflectance in the visible (VIS) region using empirical equations based on 

the normalized difference vegetation index (NDVI). The DT algorithm has improved surface-55 

reflectance modelling through consideration of the fractional area of urbanization (Gupta et al., 2016). 

Ocean-surface reflectance is estimated using the Cox and Munk method (Cox and Munk, 1954), and 

AOPs over land and ocean are provided at spatial resolutions of 10 km × 10 km and 3 km × 3 km 

(Remer et al., 2013), respectively. The DB algorithm has an advantage over the DT algorithm in 

allowing aerosol data retrieval over bright surfaces. By using a shorter-wavelength channel, accuracy is 60 

improved over bright surfaces such as urban and desert areas, where surface reflectance was previously 

estimated by the minimum reflectance method (MRM; Herman and Celarier 1997; Koelemeijer et al., 

2003; Hsu et al., 2004). Furthermore, with the improvement to Collection 6.1, land-surface reflectance 

can be estimated similarly to the DT method, over densely vegetated regions (Sayer et al., 2019). In the 

case of VIIRS DB, aerosol retrieval over the ocean is also applied by the Satellite Ocean Aerosol 65 

Retrieval (SOAR) algorithm (Sayer et al., 2018). In the MODIS MAIAC system, surface reflectance is 

estimated by considering various images based on time-series analysis, with multi-angle observations, 

based on up to 16 day data, and by applying the bidirectional reflectance distribution function (BRDF). 

Ocean-surface reflectance is determined using a Cox and Munk BRDF model similar to DT and VIIRS 

DB (Lyapustin et al., 2011a, b, 2018). The MISR observes Earth at nine different angles, providing a 70 

high degree of freedom in signals; consequently, retrievals yield estimates of aerosol type and shape. As 

with the MAIAC, multiple observations are used, with the estimation of land-surface reflectance 

involving bidirectional reflectance factors (BRF). Zhang et al. (2016) developed an aerosol retrieval 

algorithm that allows aerosol data retrieval over bright land surfaces using surface-reflectance ratios 

from the VIIRS. 75 

Aerosol retrieval algorithms for geosynchronous Earth orbit (GEO) satellites have been developed, 

including the Geostationary Operational Environmental Satellite (GOES) series in the USA (Knapp et 
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al., 2005), Meteosat series in Europe (Bernard et al., 2011), Himawari series in Japan (Yoon et al., 

2007; Kim et al., 2008; Lim et al., 2018; Kikuchi et al., 2018; Yoshida et al., 2018; Gupta et al., 2019), 

and the Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT, GK) series in South Korea 80 

(Kim et al., 2014, 2016; Choi et al., 2016, 2018; Kim et al., 2020). However, previously launched 

geostationary meteorological satellites had only a single, broadband VIS channel, with which it is 

difficult to retrieve AOPs other than aerosol optical depth (AOD) (Wang et al., 2003; Knapp et al., 

2005; Kim et al., 2008, 2014, 2016; Bernard et al., 2011). However, the Geostationary Ocean Color 

Imager (GOCI) onboard the GK-1 satellite, also known as the  Communication, Ocean, and 85 

Meteorological Satellite (COMS), has six VIS and two near-infrared (NIR) channels, which is 

advantageous for retrieving AOPs (Lee et al., 2010; Choi et al., 2016, 2018; Kim et al., 2017). Next-

generation meteorological GEO satellite instruments, including the Advanced Himawari Imager (AHI), 

Advanced Baseline Imager (ABI), and Advanced Meteorological Imager (AMI), have three to four VIS 

and NIR channels, which enable aerosol property retrieval with high accuracy (Lim et al., 2016, 2018; 90 

Kikuchi et al., 2018; Yoshida et al., 2018; Gupta et al., 2019). Kikuchi et al. (2018) and Yoshida et al. 

(2018) performed aerosol retrievals using the MRM and corrected reflectance using empirical 

equations. Gupta et al. (2019) extended the MODIS DT algorithm to GEO satellites and estimated 

visible surface reflectance using SWIR reflectance. Lim et al. (2018) retrieved the AOPs using both 

MRM and estimated surface reflectance from short-wave IR (SWIR) data (estimated surface 95 

reflectance, ESR), and presented the two merged products: an L2-AOD merged product, and a 

reprocessed AOD produced by merging MRM and ESR surface reflectances. 

Algorithms developed to date for LEO and GEO satellites have both advantages and disadvantages, 

depending on algorithm characteristics. Therefore, the MODIS team provides combined DT and DB 

AOD products (Levy et al., 2013; Sayer et al., 2014). In addition, several studies of the fusion of L2 100 

products have been conducted (Levy et al., 2013; Sayer et al., 2014; Wei et al., 2019), with Bilal et al. 

(2017) obtaining reliable results from merged DT and DB products, as indicated by the NDVI in East 

Asia, and also robust products by simply averaging DT and DB without consideration of the NDVI. 

AOP data fusion in East Asia may also be achieved using aerosol products of AMI, GOCI-2, and the 

geostationary environment monitoring spectrometer (GEMS) onboard the GK-2A and 2B satellites 105 

launched by South Korea in 2018 and 2020, respectively, with accuracy over bright surfaces being 

improved by the GEMS aerosol product. It is also possible to obtain accurate AOPs, such as single-

scattering albedo, aerosol loading height, and fine-mode fraction, which have been difficult to obtain by 

fusion of L2 data and/or surface reflectance data. If the trace-gas dataset retrieved from GEMS is used, 

it is possible to improve the aerosol type, with the retrieval of high-quality AOD data. 110 

Several studies have considered AOD data fusion, for which methods can be broadly classified into 

two types. First, the fusion of more than one AOD product may involve optimal interpolation (Xue et 

al., 2012), linear or second-order polynomial functions (Mélin et al., 2007), arithmetic or weighted 

means (Gupta et al., 2008), or maximum-likelihood estimates (MLE) (Nirala, 2008; Xu et al., 2015; Xie 

et al., 2018). Second, in the absence of satellite-derived AOD products for the day of fusion, the 115 

geostatistical fusion method, universal kriging method (Chatterjee et al., 2010; Li et al., 2014), 

geostatistical inverse modelling (Wang et al., 2013), or spatial statistical data fusion (Nguyen et al., 

2012) may be applied. These have the advantage that AOD can be estimated by integrating the spatial 

autocorrelation of AOD data even for pixels missing from the AOD products, although there is a 
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disadvantage in not considering temporal correlations. The Bayesian maximum entropy (BME) method, 120 

taking into account temporal autocorrelation, has also been developed (Tang et al., 2016). BME 

methodology can estimate gap-filling pixels that are difficult to retrieve due to clouds, but with 

somewhat reduced accuracy. Gap filled AOD using the BME method, and satellite-derived AOD 

discontinuity arises from insufficient temporal sampling being available with the use of LEO satellites, 

resulting in a low fusion synergy. 125 

In this study, the GEO satellite dataset was used to resolve the temporal sampling issue for data fusion, 

while maintaining the spatio-temporal resolution retrieved from GEO satellites. We also attempted to 

estimate fused AOD products with higher accuracy in East Asia. The ensemble-mean and MLE 

methods were applied. Section 2 describes the two algorithms used in this study for AHI and GOCI. 

Section 3 mentions methods of fusion and systematic bias correction, and section 4 performs validation 130 

of the fused products with the Aerosol Robotic Network (AERONET) and Sun-Sky Radiometer 

Observation Network (SONET) instruments during two field campaigns: the Korea–United States Air 

Quality Study (KORUS-AQ) and the Effect of Megacities on the Transport and Transformation of 

Pollutants on Regional and Global Scales Study (EMeRGe). 

2. Descriptions of AHI, GOCI, the YAER algorithm, and the two field campaigns 135 

2.1 AHI aerosol algorithm 

The Himawari-8 and -9 satellites were launched by the Japanese Meteorological Agency (JMA) on 7 

October 2014 and 2 November 2016, respectively. The AHI onboard these satellites has 16 channels 

covering wavelengths of 0.47–13.3 μm and performs full-disk and Japan-area observations every 10 and 

2.5 min, respectively, from GEO at 140.7° E longitude (Bessho et al., 2016). Visible and NIR 140 

observations are also performed at high spatial resolutions of 0.5–1.0 km, with SWIR to IR at 2 km, 

which have advantages in aerosol property retrieval and cloud masking. 

Lim et al. (2018) developed the AHI Yonsei aerosol retrieval (YAER) algorithm and provided two 

retrieval results with 6 km × 6 km resolution based on MRM and ESR using SWIR data. Aerosol 

property retrieval using VIS channels requires accurate surface reflectance, for which MRM and ESR 145 

are useful, with the main difference between the two lying in the surface-reflectance estimation method. 

The MRM applies the minimum-reflectance technique over both land and ocean (Lim et al., 2018), 

with surface reflectance being estimated by finding the minimum reflectance in each pixel over the past 

30 day window, giving the Lambertian equivalent reflectance (LER; Knapp et al., 2002; Wang et al., 

2003; Kim et al., 2008; Choi et., 2016, 2018; Kim et al., 2016; Lim et al., 2018). This method takes the 150 

bidirectional characteristics of surface reflectance into consideration by obtaining surface reflectance at 

each observation time over the 30-day search window. However, the method assumes that during the 

search window there is more than one clear day and that surface reflectance does not change; otherwise, 

it is affected by clouds and/or the background aerosol optical depth (BAOD; Kim et al., 2014). 

According to the ESR method, land-surface reflectance in the Vis region is constructed from the Top 155 

of Atmosphere (TOA) reflectance at 1.6 μm wavelength, based on the NDVI for SWIR and the fraction 

of urbanization and cropland (Levy et al 2013; Gupta et al., 2016; Zhong et al., 2016; Lim et al., 2018). 

Ocean-surface reflectance is estimated from the Cox and Munk BRDF model (Hsu et al., 2004; Lee et 
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al., 2012; Jackson et al., 2013; Choi et al., 2016, 2018; Lim et al., 2018; Sayer et al., 2018). 

Chlorophyll-a concentrations are considered in addition to data from Japan Aerospace Exploration 160 

Agency (JAXA) (Murakami et al., 2016) and interpolated for the 10-min AHI intervals. For unretrieved 

pixels, the East Asian climatological value of 0.02 mg m−3 is used (Yamada et al., 2004). Details of the 

methodology can be found in Lim et al. (2018). 

The MRM gives better accuracy over brighter surfaces such as urban areas, while the ESR method 

gives better accuracy over areas of dense vegetation (Lim et al., 2018). However, there is a critical 165 

surface reflectance at which aerosol signals disappear, depending on the single-scattering albedo (Kim 

et al., 2016). Over the ocean, both the MRM and ESR methods give high accuracy, but ESR results are 

robust with the Cox and Munk model. 

The MRM requires more computational time than the ESR method to estimate surface reflectance, as it 

requires data for the past 30 days, and LER needs to be calculated using a radiative transfer model. The 170 

ESR method estimates surface reflectance from the observed TOA reflectance at 1.6 μm wavelength 

using empirical equations including the NDVI. The advantage of MRM is that stable surface reflectance 

values can be obtained regardless of surface type. However, due to the influence of BAOD, surface 

reflectance tends to be overestimated, with satellite-derived AOD data thus being underestimated (Kim 

et al., 2014). On the other hand, the ESR method uses TOA reflectance at 1.6 μm wavelength to detect 175 

surface signals, which is less sensitive to fine particles and BAOD. However, when aerosols such as 

yellow dust with coarse particles are transported from the Taklamakan and Gobi deserts, the BAOD 

effect also applies to the ESR method. The ESR method is also more likely to be affected by snow 

surfaces than the MRM, as snow reduces reflectivity around the 1.6 μm wavelength (Negi and 

Kokhanovsky, 2011). The ESR method also has the disadvantage of giving noisy results over bright 180 

surfaces such as desert. However, its fast surface-reflectance estimation enables near-real-time retrieval 

based on the AHI YAER algorithm. 

2.2 GOCI aerosol algorithm 

GOCI is an ocean color imager launched onboard COMS in 2010 and observes the East Asia region at 

an hourly interval with 500 m× 500 m resolution (Choi et al., 2012). It has eight bands in the VIS and 185 

NIR regions, which is advantageous for aerosol retrieval. Two versions of GOCI Yonsei aerosol 

algorithms have been developed, referred to as V1 and V2 (Lee et al., 2010; Choi et al., 2016, 2018). In 

the case of V1, surface reflectance is estimated by the MRM using LER for the past 30 days over land, 

and the Cox and Munk BRDF model over oceans. In V2, ocean-surface reflectance is estimated by the 

same method, but land-surface reflectance is improved by using an accumulated long-term database. To 190 

minimize the impact of BAOD (the weakness of the MRM), a monthly surface-reflectance database was 

constructed using all of the LERs over the past five years, but it cannot reflect unexpected changes in 

surface conditions. However, a well-established climatological database allows aerosol property 

retrieval in near-real-time with reasonable accuracy. 

Satellite-derived AODs have different error characteristics for NDVI, scattering angle, and so on (Choi 195 

et al., 2016, 2018; Lim et al., 2018). Over oceans, ESR AODs are more accurate than MRM values. 

However, in GOCI, the NDVI shows a negative bias in V1 and positive bias in V2. In this study, we 
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developed optimal AOPs in East Asia by fusing two AHI aerosol products from the MRM and ESR 

methods, and GOCI products from V1 and V2. 

2.3 Evaluation of aerosol products during two field campaigns 200 

The performance of fused products was analyzed in two field campaigns: the KORUS-AQ of 1 May 

2016 to 12 Jun 2016 (https://www-air.larc.nasa.gov/missions/korus-aq/), and EMeRGe of 12 Mar 2018 

to 8 Apr 2018 (https://www.halo.dlr.de/science/missions/emerge/emerge.html). KORUS-AQ was an 

international multi-organization mission to observe air quality across the Korean Peninsula and 

surrounding waters, led by the US National Aeronautics and Space Administration (NASA) and the 205 

Korean National Institute of Environmental Research (NIER). EMeRGe aimed to investigate 

experimentally the patterns of atmospheric transport and transformation of pollution plumes originating 

from Eurasia, tropical and subtropical Asian megacities, and other major population centers. GEO 

satellite data played an important role in these campaigns; e.g., data assimilation for chemical transport 

models and tracking aerosol plumes (Saide et al., 2014; Pang et al., 2018; Saide et al., 2020). Here, we 210 

applied satellite-derived GOCI and AHI AODs, with a spatial resolution of 6 km × 6 km, and temporal 

resolutions of 1 hour and 10 minutes, respectively.  

 

3. Data fusion methods 

3.1 Spatio-temporal matching 215 

The AHI and GOCI have different spatial pixel locations and temporal resolutions, so it is necessary to 

match their spatio-temporal resolutions before data fusion. GOCI and AHI AODs have the same spatial 

resolution of 6 km × 6 km, but the two satellites are located at 128.2° E and 140.7° E, respectively, at 

the Equator. Spatial pixel matching is therefore required. However, satellite-derived AOD represents 

total-column extinction, so AOD retrieved by the two sensors is not significantly affected by satellite 220 

position. To merge the different satellite spatial pixel coverages, the GOCI pixel was re-gridded to 

match AHI pixels for full-disk observation, with up to 4 GOCI AOD pixels being used with average 

values considered representative of pixel values. If more than half of the AHI AOD pixels did not exist 

out of the maximum 6 AHI data per hour, it is regarded as cloud contaminated pixels and an additional 

cloud removal process is performed. This process applies to both the MRM and ESR method, to remove 225 

the AHI’s additional cloud-contaminated pixels in products of both GOCI V1 and V2, which have a 

disadvantage in cloud masking due to their lack of IR channels. When three or more pixels were 

available for generating AHI data at 1 hour intervals, hourly AOD values were estimated as the medians 

of pixel values. 

3.2 Ensemble mean method 230 

Here, AMR represents AHI MRM AOD, AES represents AHI ESR AOD, GV1 represents GOCI V1 

AOD, and GV2 represents GOCI V2 AOD. We performed data fusion using AMR, AES, GV1, and 

GV2 data within 1 hour intervals for which additional-cloud masking was performed. The ensemble 
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mean is the mean of the ensemble member over a specific time. The ensemble members are AMR, AES, 

GV1, and GV2 based on two satellite instruments and two different surface-estimation methodologies. 235 

Table 1 provides the satellite-derived AOD used for ensemble-mean and MLE fusion.  

Fusion was performed only when a pixel of an ensemble member was used for all fusions. Fusion 1 

(F1) included the two AHI products of AMR, and AES and GV2. Fusion 2 (F2) involved the calculation 

of the YAER algorithm by the fusion of AES and GV2, both of which have the advantage of producing 

data in near-real-time. Fusion 3 (F3) merged AMR and AES to estimate AOD over a wide area, and 240 

Fusion 4 (F4) involved a comparison with F1 to determine how accuracy varied with increasing number 

of ensemble members. FM1 is the result of MLE fusion involving all satellite-derived AOD, and FM2 

involves AER and GV2 for near-real-time operation. FM3 includes AMR and AES, enabling wide-area 

observation.  

3.3 MLE method 245 

The MLE method provides a means of weighting and averaging based on errors evaluated with 

AERONET ground-based measurements (Nirala, 2008; Xu et al., 2015; Xie et al., 2018). 

This method employs the following equations: 

!!"#$ = 	$ %!,&'(
∑ %!,&'()
&*+

!!,&
)

&*+
 (1) 

%!,& = '∑ ()!,& − +!)("
!*+

-  (2) 

where !!"#$ represents the fused AOD; !!,& represents the mean AOD at grid point i from the satellite-

derived AOD product k, where k is the index for different satellite-derived AOD products for fusion; 250 

%!,& represents the root-mean-square error (RMSE) at grid point i for the satellite-derived AOD product 

k; N is the number of all AOD data; +! represents the mean of ground-based AOD at grid point i from 

the AERONET/SONET (collocated temporal mean); )!,& represents the mean of satellite derived AOD 

products (k) at grid points of the AERONET/SONET (collocated spatial mean); and M is the number of 

pairs of )!,& and +!. 255 

The RMSE used here was calculated by comparing average AERONET/SONET AODs over ±30 

minutes intervals with respect to the satellite observation time, and AODs within 25 km of the 

AERONET/SONET site. For MLE over wide areas without ground measurements, the RMSE was 
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estimated by grouping AODs based on NDVI bins; their values for the KORUS-AQ period are 

summarized in Table 2. We excluded points that were >2 standard deviations (SD) to remove outliers 260 

and to consider only the more stable RMSE values. 

 

3.4 Bias correction 

AOD follows a log-normal distribution (Sayer et al., 2013), but AOD differences with respect to 

AERONET/SONET data (dAOD) for each satellite product follow a Gaussian distribution. The error 265 

distributions of AMR, AESR, GV1, and GV2 used here also follow a Gaussian distribution, with dAOD 

during the KORUS-AQ and EMerGe campaigns being as shown in Figure 1. To minimize the effect of 

outliers in this process, data beyond 2 SD were excluded and applied differently according to NDVI and 

time. Data beyond 2 SD of dAOD were excluded to prevent a change in bias trends due to AOD errors 

caused by cloud shadows and pixels contaminated by clouds. Bias correction values are provided in 270 

Table 3. This process was performed before applying the MLE method, which allows compensation for 

systematic bias that is difficult to obtain directly in MLE. 

 

4. Results 

AOD products retrieved by each satellite instrument, ensemble-mean products, and the fusion products 275 

of the MLE method, are shown in Figure 2 for the KORUS-AQ period and in Figure 3 for the EMeRGe 

period. The AOD fusion products (Figure 2a–d) tends to indicate higher AODs on the western side of 

the Korean Peninsula than the eastern side, and high AODs in Hokkaido, Japan. The same trends are 

observed over China with high AODs, where the AER product shows the highest values, and the 

respective satellite products display similar patterns. Large differences are evident in southern Tibet and 280 

the Taklamakan desert (Figure 2a, b) as a result of the error in the ESR method caused by unreliable 

surface reflectance over bright surfaces resulting in overestimation of AOD, as reported in previous 

studies (Levy et al., 2013; Gupta et al., 2016). The aerosol spatial distribution (Figure 2e–h) is similar in 

the different satellite products, and smooth overall. High AODs are noticeable over Shanghai, Hong 

Kong, and Hanoi (Figure 2g), consistent with the results of previous studies that reported high 285 

concentrations of surface particulate matter in urban regions. MLE results (Figure 2i–k) are similar to 

the ensemble-mean products. Results for the EMeRGe campaign (Figure 3) are similar to those in 

Figure 2, but with higher AODs in northwestern Japan, Hokkaido, and northern Russia (particularly in 

Figure 3b). The AMR product (Figure 3a, c, d) indicates small errors, but snow masking needs to be 

improved. It also shows high AODs over the Yellow Sea, indicating that aerosols were transported from 290 

China during the EMeRGe campaign. For the ensemble mean AODs, each satellite-derived product 

complements each other, reduced the scattered distribution in the lower AOD region to improve overall 

accuracy which can be compared and demonstrated well at sites with low aerosol loadings in particular. 

The Gangneung-Wonju National University site (Gangneung-WNU; 128.87°E, 37.77°N) lies on the 

eastern side of the Korean Peninsula and it is one of the regions with low aerosol loadings. The AOD 295 

frequency distribution generally follows a log-normal distribution, and it is important to estimate low 
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AOD levels exactly to increase its accuracy. Therefore, we evaluated whether the fused and MLE 

products were improved at low AODs. A time-series comparison of different satellite AOD products 

with AERONET (on a logarithmic scale) is shown in Figure 4 for the Gangneung-WNU site without 

high AOD events, where most point AERONET AODs at 550 nm were < 1 during the KORUS-AQ 300 

campaign. Time-series data from ground instrument, AMR, AES, GV1, and GV2 products are shown in 

Figure 4a, where black filled circles represent AERONET AOD as ground-truth data, and satellite-

derived AODs (in different colors) display similar variabilities. AMR, GV1, and GV2 outputs based on 

the MRM generally exhibit negative biases, with AES AODs being higher than other products. 

Ensemble-mean and MLE results are presented in Figure 4b and c, respectively, and show better 305 

agreement with the AERONET AOD than individual satellite AODs. MLE results, which consider 

pixel-level uncertainties (in contrast to ensemble means), are superior in following the variability of 

ground-based AERONET observations, even at low AODs. The MLE products were implemented in a 

way to improve accuracy for the low AOD region more critically than in the high AOD region by 

systematic bias correction. Surface reflectance estimated by the MRM is affected by BAOD, and AOD 310 

thus shows a negative bias. On the other hand, the AER uses TOA reflectance at 1.6 μm wavelength to 

estimate surface reflectance and is therefore less affected by BAOD, and shows higher AOD than AMR 

and the two GOCI AODs. Furthermore, AOD retrieval over vegetated areas is more accurate with the 

ESR method. This result is consistent with previous studies of aerosol retrieval in the VIS region (Levy 

et al., 2013; Gupta et al., 2019; Hsu et al., 2019). 315 

 

5. Error estimation and validation against AERONET and SONET 

For validation and error estimation, AERONET/SONET aerosol products were used for ground truth. 

AERONET/SONET offers freely available spectral AOD measurements every 15 min (or less) at 

numerous monitoring sites worldwide, with an uncertainty of 1%–2% under cloudless conditions 320 

(Smirnov et al., 2000; Holben et al., 2001). Newly updated AERONET Version 3 Level 2.0 AOPs with 

additional cloud screening and quality control were selected for validation purposes (Giles et al., 2019). 

The number of  AERONET/SONET sites used for validation in this study, was 78 and 42 during the 

KORUS-AQ campaign, and 68 and 27 during the EMeRGe campaign, for AHI and GOCI, respectively. 

 325 

5.1 Validation with AERONET and SONET 

Spatio-temporal correlation between satellite-derived AOD and AERONET/SONET AOD involved 

data averaged over all satellite pixels within a 25 km radius of the AERONET/SONET site, and 

AERONET/SONET AOD averaged over ±30 minutes from the satellite observation time. As validation 

metrics, Pearson’s correlation coefficient, mean absolute error (MAE), median bias error (MBE), and 330 

the fraction (%) within the expected error (EE) were applied. The MODIS DT algorithm provided EE as 

±0.05 ± 0.15 × AOD (Levy et al., 2010). Results of the comparison with AERONET during KORUS 

AQ are shown in Figure 5, the EE values of AER, AES, G1, and GV2 were 53.1%, 58.5%, 51.0%, and 

49.0%, respectively. Fused products and MLE products have EE values of up to 71.9%, much higher 
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than the respective satellite product. In terms of RMSE, the fusion products have a value of 0.131, lower 335 

than the minimum value of various satellite products (0.161). Figure 5g and k shows relatively scattered 

patterns compared with other fusion products because they show data fused with only AHI products. EE 

values for all AERONET products used for validation are shown in Figure 6, where AHI covers a 

broader area than GOCI. The accuracy is low over northern India and the Indochina Peninsula. 

However, EE values after fusion (Figure 6g, k) are higher than those of the respective satellite product. 340 

The fused results (Figure 6g, k) of only two AHI products display high EE values within the domains of 

GOCI and other fusion products. The scattered fusion results based on two AHI products (Figure 5) can 

thus be attributed to issues at these particular sites, rather than to the satellite products themselves. 

Results of the comparative validation with AERONET during the EMeRGe campaign (Figure 7) 

indicate that, overall, fusion products improve the statistical metrics, as in the KORUS-AQ case. The 345 

validation result for each satellite product shows that the maximum value of EE is 61.5%–68.9% after 

fusion. Thus, the EE increases as other statistics improve, including an RMSE decrease from 0.167 to 

0.146, and an MBE decrease to zero. 

As in the KORUS-AQ campaign, the validation results for the two AHI products and the fusion 

products based on AHI AODs only are inferior to the results for the fusion products based on GOCI 350 

AODs. This is because the validation was performed over wider areas, and problems were noted at 

specific sites. The fused results showed improved accuracy not only in terms of EE but also in statistical 

metrics such as RSME, MBE, and MAE. Results for the EMeRGe campaign are shown in Figure 8. 

During that campaign, validation results over brighter surfaces in northern India and the Indochina 

Peninsula show reduced accuracy, but fusion results show consistently higher EE values than individual 355 

satellite products. 

5.2 Error estimation 

Differences between satellite products and AERONET, dAOD values were analyzed on the basis of 

NDVI values and observation times (Figure 9). Figure 9a and d shows the respective satellite products, 

Figure 9b and c the ensemble-mean product, and Figure 9c and f the MLE fusion results, with each 360 

filled circle representing the mean of 800 and 600 collocated data points sorted in terms of NDVI for 

the KORUS-AQ and EMeRGe campaigns, respectively. Figure 9a shows different biases for each 

satellite product, with AMR and GV1 being negative, AES positive, and GV2 converging to almost 

zero. The errors are close to zero for both the ensemble-mean and MLE products as a result of the 

fusion process. During the EMeRGe campaign (right column, Figure 9), the two AHI and two GOCI 365 

products show negative biases, and even the ensemble-mean results have negative biases. The ensemble 

mean does not include any bias correction, meaning that the error characteristics of each original 

satellite product are intact. The MLE products display improved biases in terms of NDVI, which are 

close to zero because the bias was corrected for in the MLE process. 

The mean bias of the AOD products over the observation time was analyzed as shown in Figure 10 370 

where, as in Figure 9, the left column represents the KORUS-AQ and the right column the EMeRGe 

campaign, with filled circles representing mean values, and the error bar being ±1 SD. As in Figure 9, 

the AMR displays a generally negative bias, as in the all-time results, and a negative bias also exists in 

each time zone. However, the AES shows a positive bias. In the GOCI case, positive and negative 
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biases appear differently according to time zones. In the EMeRGe period, the two AHI results have 375 

large error ranges. GEO satellites perform observations over a specific area with a fixed viewing zenith-

angle and retrieve AOPs by solar reflectance, which means that a specific site has different local time 

depending on its longitude for a given satellite image. Furthermore, there are fewer data for the 

EMeRGe period than the KORUS-AQ period, and data for northern India and the Indochina Peninsula, 

which have low accuracy, are included in the data for 0100–0300 UTC, indicating large errors. In the 380 

KORUS-AQ period, the data fraction for a specific site is not as large as in the EMeRGe period, so this 

problem does not arise. Taylor diagrams for accuracy evaluation of AOD data fusion products are 

shown in Figure 11. The Taylor diagram is a graphic summary of how closely satellite retrievals match 

observations. Here, match-up values were respective and fusion AOD products, and the matching up 

data were AERONET AOD. Correlation coefficient, SD, RSME, and EE values were used as the 385 

matching criteria. The correlation coefficient is shown in green (Figure 11) with a polar angle, the SD is 

shown in the radial distance on the black x- and y-axes, and RMSE is the proportional cyan circle from 

the “AERONET” point on the x-axis. The EE value, which can evaluate the stability of AODs, is shown 

for each color. All open symbols represent the results of selecting only the same collocation site as 

GOCI, and the filled symbols are comparative validations of all sites. GV1, GV2, AMR, AES, F1, F2, 390 

F3, F4, FM1, FM2, and FM3 are indicated by diamond, star, square, circle, top half-circle, lower half-

circle, left half-circle, right half-circle, down-pointing triangle, right-pointing triangle, and left-pointing 

triangle shapes, respectively.  

The filled symbols cover a large area, so sites with poor accuracy are reflected in correlations, SD, 

RMSE, and EE values. Correlation coefficients are all around 0.8–0.9 with no significant differences for 395 

respective and fusion AODs. However, results after fusion show slightly better than respective satellite 

product accuracy in terms of SD, RMSE, and EE values. 

Standard deviation values indicate that products that lie outside the purple dotted half-circle are larger 

than the SD of AERONET. In the AHI case, the SD appears smaller than GOCI values because it tends 

to underestimate values at high AOD. Similarly, RMSE values are lower after fusion. However, the 400 

results of AMR and AER included in the GOCI observation area show better accuracy than the GOCI, 

with statistical metrics similar to those of the fusion products. 

The EMeRGe period was from March to April, when the surface is brighter in East Asia than during 

the KORUS-AQ period of May to June. The accuracy during the EMeRGe period is therefore similar to 

or slightly poorer than that of the KORUS-AQ period. The correlation coefficient shows similar values, 405 

but the SD, RMSE, and EE values are slightly lower. Again, the accuracy of the validation metrics is 

improved by fusion. 

The error analysis indicates that the results after fusion are more accurate than the results obtained 

using individual satellite product, and accuracy was slightly better during KORUS-AQ than EMeRGe 

because more data points were considered. 410 
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6. Summary and conclusion 

Various aerosol algorithms have been developed based on two different GEO satellites, AHI, and 

GOCI. Retrieved AOD data have advantages and disadvantages, depending on the concept of the 

algorithm and surface-reflectance estimations. In this study, four aerosol products (GV1, GV2, AMR, 415 

and AES) were used to construct ensemble-mean and MLE products. Based on the ensemble mean, this 

study presented fusion products taking advantage of overlap region, accuracy, and near-real-time 

processing, as well as MLE products including pixel-level errors. Bias corrections for different times 

were performed while considering pixel-level errors, and the synergy of fusion between GEO satellites 

demonstrated. 420 

Validation with the AERONET confirmed that consideration of pixel-level uncertainty improved the 

accuracy of MLE products. The accuracy after fusion was better than that of individual satellite product. 

The EE of each satellite-derived product during the KORUS-AQ was 53.1%, 58.5%, 51.6%, and 49.0% 

in AMR, AES, GV1, and GV2; and the RMSE was 0.179, 0.197, 0.161, and 0.183, respectively. After 

the ensemble-mean process, the EE of F1, F2, F3, and F4 increased to 71.9%, 71.4%, 63.9%, and 66.5%, 425 

respectively. FM1, FM2, and FM3, which are results of MLE fusion, had EE values of 69.0%, 63.8%, 

and 59.2%, with RMSE values of 0.137, 0.150, and 0.168, respectively, better than the respective 

satellite product. Similarly, the EMeRGe period displayed better statistical values after fusion, with EE 

and RMSE values of 68.9% and 0.146, respectively. Error was reduced for bias due to NDVI, scattering 

angle, and time, to provide optimized AOD products for East Asia. However, since both satellite 430 

algorithms retrieved AOPs through VIS channels, there remains an issue of reduced accuracy over 

brighter surfaces, with AOP retrieval in the VIS channel being more accurate over dark surfaces, and 

with results being more accurate during the KORUS-AQ period than the EMeRGe period. The fusion 

products improved the accuracy of satellite products, and MLE products further improved the accuracy 

by taking into account pixel-based errors based on long-term data analysis. The method applied in this 435 

study could be used for AOD fusion of GEO data, such as GK-2A and 2B. Furthermore, it is possible to 

retrieve AOPs other than AOD using multi-angle, multi-channel (UV, VIS, and IR) observations with 

GK-2A and 2B. 
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Table 1. Satellite dataset used for the fusion products. 

AOD type F1 F2 F3 F4 FM1 FM2 FM3 

AER O O O O O O O 

AMR O  O O O  O 

GV1    O O   

GV2 O O  O O O  
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Table 2. RMSE values by time, AOD, and NDVI during KORUS-AQ, as used in this study. 

AOD ≤ 0.5 
/  

AOD >0.5 
products 00 UTC 01 UTC 02 UTC 03 UTC 04 UTC 05 UTC 06 UTC 07 UTC 

NDVI ≤ -
0.1 

AMR 0.109 / 0.232 0.109 / 0.141 0.1 / 0.134 0.104 / 0.157 0.1 / 0.165 0.111 / 0.189 0.098 / 0.206 0.125 / 0.211 

AES 0.074 / 0.185 0.073 / 0.196 0.072 / 0.187 0.067 / 0.365 0.066 / 0.421 0.063 / 0.396 0.059 / 0.324 0.05 / 0.261 

GV1 0.137 /0.145 0.114 / 0.158 0.124 / 0.204 0.109 / 0.198 0.119 / 0.169 0.125 / 0.183 0.123 / 0.194 0.124 / 0.204 

GV2 0.101 /0.182 0.107 / 0.154 0.113 / 0.257 0.113 / 0.235 0.125 / 0.242 0.108 / 0.276 0.121 / 0.243 0.115 / 0.204 

-0.1 < 
NDVI ≤ 

0.1 

AMR 0.082 /0.142 0.093 / 0.202 0.132 / 0.17 0.154 / 0.226 0.102 / 0.217 0.101 / 0.172 0.112 / 0.195 0.149 / 0.224 

AES 0.067 /0.119 0.08 / 0.167 0.086 / 0.188 0.097 / 0.232 0.09 / 0.234 0.073 / 0.223 0.081 / 0.231 0.061 / 0.166 

GV1 0.107 /0.144 0.093 / 0.167 0.098 / 0.157 0.092 / 0.232 0.093 / 0.194 0.1 / 0.174 0.093 / 0.17 0.107 / 0.146 

GV2 0.098 / 0.164 0.105 / 0.205 0.107 / 0.216 0.111 / 0.294 0.098 / 0.229 0.106 / 0.231 0.092 / 0.2 0.089 / 0.184 

-0.1 < 
NDVI ≤ 

0.1 

AMR 0.104 / 0.207 0.115 / 0.184 0.125 / 0.226 0.126 / 0.183 0.116 / 0.199 0.105 / 0.165 0.103 / 0.251 0.109 / 0.247 

AES 0.085 / 0.17 0.088 / 0.165 0.092 / 0.196 0.102 / 0.216 0.098 / 0.236 0.099 / 0.234 0.079 / 0.188 0.06 / 0.191 

GV1 0.094 / 0.188 0.1 / 0.222 0.118 / 0.211 0.111 / 0.2 0.087 / 0.193 0.102 / 0.228 0.118 / 0.19 0.115 / 0.26 

GV2 0.094 / 0.185 0.106 / 0.222 0.111 / 0.282 0.111 / 0.266 0.104 / 0.285 0.097 / 0.226 0.105 / 0.18 0.107 / 0.21 

0.1 < 
NDVI ≤ 

0.3 

AMR 0.096 / 0.189 0.092 / 0.183 0.117 / 0.239 0.139 / 0.188 0.119 / 0.185 0.094 / 0.176 0.088 / 0.227 0.102 / 0.28 

AES 0.094 / 0.182 0.099 / 0.153 0.125 / 0.23 0.113 / 0.2 0.125 / 0.256 0.111 / 0.217 0.108 / 0.195 0.114 / 0.184 

GV1 0.071 / 0.17 0.072 / 0.165 0.092 / 0.249 0.102 / 0.156 0.114 / 0.264 0.104 / 0.157 0.078 / 0.206 0.053 / 0.23 

GV2 0.104 / 0.228 0.1 / 0.237 0.107 / 0.275 0.108 / 0.287 0.116 / 0.256 0.101 / 0.215 0.099 / 0.219 0.128 / 0.254 

0.3 < 
NDVI ≤ 

0.5 

AMR 0.061 / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN 

AES 0.076 / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN 

GV1 0.076 / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN 

GV2 0.067 / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN NaN / NaN 
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Figure 1. Comparison between observed AOD error distributions for AMR (cyan), AES (green), GV1 (yellow), 
and GV2 (blue). 
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Table 3. Systematic bias correction values for NDVI groups and temporal bins, for each satellite product from Gaussian fitting analysis used in MLE fusion. 

 products 00 UTC 01 UTC 02 UTC 03 UTC 04 UTC 05 UTC 06 UTC 07 UTC 

NDVI ≤ -
0.1 

AMR -0.105 -0.060 -0.067 -0.125 -0.059 -0.026 -0.038 -0.067 

AES -0.044 -0.001 0.006 0.022 0.009 0.020 0.001 -0.034 

GV1 -0.107 -0.069 -0.088 -0.072 -0.124 -0.109 -0.097 -0.106 

GV2 -0.046 0.002 0.079 -0.012 -0.025 -0.005 -0.141 -0.082 

-0.1 < 
NDVI ≤ 

0.1 

AMR -0.029 -0.003 -0.044 -0.017 -0.041 -0.016 -0.018 -0.046 

AES 0.009 0.005 0.022 0.046 0.068 0.035 0.037 -0.014 

GV1 -0.066 -0.038 -0.052 -0.056 -0.045 -0.042 -0.062 -0.085 

GV2 -0.033 0.116 -0.002 0.010 0.003 -0.024 -0.019 -0.051 

-0.1 < 
NDVI ≤ 

0.1 

AMR -0.028 -0.043 -0.141 -0.053 -0.028 -0.023 -0.048 -0.069 

AES 0.039 0.036 0.024 0.056 0.066 0.061 0.021 -0.020 

GV1 -0.055 -0.056 -0.036 -0.027 -0.021 -0.041 -0.068 -0.079 

GV2 -0.029 -0.046 0.037 0.036 0.055 0.025 -0.037 -0.060 

0.1 < 
NDVI ≤ 

0.3 

AMR -0.077 -0.052 -0.072 -0.062 -0.047 -0.059 -0.062 -0.076 

AES 0.033 0.044 -0.011 0.046 0.074 0.051 0.084 -0.020 

GV1 -0.111 -0.039 -0.051 -0.049 -0.065 -0.027 -0.044 -0.177 

GV2 -0.05 -0.004 -0.090 0.061 -0.041 -0.105 -0.044 -0.215 

0.3 < 
NDVI ≤ 

0.5 

AMR -0.03 NaN NaN NaN NaN NaN NaN NaN 

AES 0.065 NaN NaN NaN NaN NaN NaN NaN 

GV1 -0.11 NaN NaN NaN NaN NaN NaN NaN 

GV2 -0.27 NaN NaN NaN NaN NaN NaN NaN 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) 

Figure 2. Images of average AOD from each satellite product and fusion product; (a) AMR, (b) AES, (c) GV1, (d) GV2, (e) F1, (f) F2, (g) F3, (h) F4, (i) FM1, (j) FM2, and 
(k) FM3 during KORUS-AQ campaign. 

https://doi.org/10.5194/amt-2020-336
Preprint. Discussion started: 17 September 2020
c© Author(s) 2020. CC BY 4.0 License.



24 
 

 (a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) 

Figure 3. Same as Figure 2, but for EMeRGe campaign. 
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(a) 

(b) 

(c) 

Figure 4. Time series of the (a) respective satellite-derived, (b) ensemble mean, 

and (c) MLE fusion AODs at Gangneung_WNU site during KORUS- AQ 

period.. 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

(k) 

Figure 5. Comparison of four respective satellite products (a) AMR, (b) AES, (c) GV1, (d) GV2, four 
ensemble mean products (e) F1, (f) F2, (g) F3, (h) F4, and three MLE products (i) FM1, (j) FM2, (k)FM3 
AOD with AERONET/SONET.AOD 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

(k) 

Figure 6. Spatial distribution of %EE for (a) AMR, (b) AES, (c) GV1, (d) GV2, (e) F1, (f) F2, (g) F3, (h) F4, (i) FM1, (j) FM2, and (k) 
FM3AOD during KORUS-AQ campaign. 

https://doi.org/10.5194/amt-2020-336
Preprint. Discussion started: 17 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 28 

  

(a) 

(b) 
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(j) 

(k) 

Figure 7. Same as Figure 5, but for EMeRGe campaign 
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(k) 

Figure 8. Same as Figure 5, but for EMeRGe campaign 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 9. Difference between (a, d) respective, (b, e) ensemble-mean, or (c,f) MLE and AERONET/SONET AOD in terms 
of NDVI during the KORUS-AQ (left column) and EMeRGe (right column) campaigns 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 10. Same as Figure 9, but for observation time. 
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(a) (b) 

Figure 11. Taylor diagrams comparing the respective, ensemble-mean, and MLE AODs and values obtained from 
AERONET during the (a) KORUS-AQ and (b) EMeRGe periods. 
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